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Modern data analytics and AI jobs become increasingly complex and involve multiple tasks performed on
specialized systems. Sharing of intermediate data between different systems is often a significant bottleneck in
such jobs. When the intermediate data is large, it is mostly exchanged through files in standard formats (e.g.,
CSV and ORC), causing high I/O and (de)serialization overheads. To solve these problems, we develop Vineyard,
a high-performance, extensible, and cloud-native object store, trying to provide an intuitive experience for
users to share data across systems in complex real-life workflows. Since different systems usually work on data
structures (e.g., dataframes, graphs, hashmaps) with similar interfaces, and their computation logic is often
loosely-coupled with how such interfaces are implemented over specific memory layouts, it enables Vineyard
to conduct data sharing efficiently at a high level via memory mapping and method sharing. Vineyard provides
an IDL named VCDL to facilitate users to register their own intermediate data types into Vineyard such that
objects of the registered types can then be efficiently shared across systems in a polyglot workflow. As a
cloud-native system, Vineyard is designed to work closely with Kubernetes, as well as achieve fault-tolerance
and high performance in production environments. Evaluations on real-life datasets and data analytics jobs
show that the above optimizations of Vineyard can significantly improve the end-to-end performance of data
analytics jobs, by reducing their data-sharing time up to 68.4×.
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Fig. 1. A Real-life Fraud Detection Job.

1 INTRODUCTION
Data-intensive computing is a typical class of big data analytics applications, and most of their
processing time is devoted to I/O and data movement and manipulation [4, 48]. Recent stud-
ies [25, 36, 51] have reported that many jobs submitted to cloud platforms fall into this category.
In addition, there is an increasingly new trend where multiple tasks belonging to different types of
workloads are fused together to form a single complex job (workflow) [41, 61, 64]. Figure 1 depicts a
real-life fraud detection job from Alibaba [23], in which diverse kinds of workloads (e.g., SQL, graph
processing, and deep learning) are involved. Consequently, handling such complex data-intensive
jobs efficiently is highly desired.
In response, two practical solutions have been proposed, namely single-system and multi-

system, but both of them still leave large room for improvement. The single-system copes with
diverse workloads in a single general-purpose system like Spark [63, 64]. Unfortunately, a workload
implemented in general-purpose systems often performs worse than that in workload-specific

systems, which are tailored for a particular type of workload. Workload-specific systems (e.g.,
Gemini [67] for graph processing) adopt specialized data structures (e.g., CSR/CSC for graphs) and
optimizations in their execution engines to offer superior performance. Sometimes, the performance
gap can reach up to several orders of magnitudes [47, 53].
Thus, a more widely-adopted solution to handling complex data analytics is multi-system,

where users employ multiple workload-specific systems to handle different types of workloads. To
exchange intermediate results between these systems, files in standard formats (e.g., CSV and ORC)
on external storage (e.g., HDFS [57], Amazon S3 [10], and Alluxio [40]) are commonly used, as
shown in Figure 1. In this way, different systems can be nicely bridged, but the cost of data sharing
across systems becomes higher than that in single-system (e.g., Spark). The root cause is that the
interfaces for files (i.e., read and write) are primitive and unstructured. Hence, dumping/loading
data as files can incur unnecessary copying, (de)serializations and/or I/Os. Moreover, instances of
high-level data structures (i.e., objects) lose their rich semantics and behaviors when flattened to
a sequence of bytes. It requires systems to repeatedly implement their own in-memory formats
and methods, as well as the (de)serialization logic. Such loss of semantics also makes it difficult
to apply cross-system optimizations (e.g., pipelined execution and computation-data co-locating).

To tackle the above issues, we present Vineyard, a distributed object store for data sharing across
workload-specific data processing systems. We observe that various workload-specific systems
are built on top of some common data structures (e.g., dataframes and graphs). Although data
structures of the same type often have different memory layouts and implementations in different
systems, their high-level interfaces keep almost the same [33]. This observation inspires us to
offer customizable common memory layouts and implementations for intermediate data structures
shared by multiple systems, and enable the efficient in-memory sharing of these data structures
and their associated interfaces and methods among different systems written in different languages.
In this fashion, different systems can access objects in Vineyard just like the high-level native
objects of their own. Vineyard supports zero-copy data sharing by decoupling an object into
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metadata and a group of payloads, allowing users to reconstruct a complex object from memory-
mapped payloads in different processes with metadata. Vineyard organizes large objects in chunk
granularity, allowing each chunk spilled to an external storage or distributed in remote hosts to
support big data. Like Protobuf [35], Vineyard provides an IDL (intermediate description languages)
named VCDL for users to define new formats to alleviate the integration burden with Vineyard.
Besides, Vineyard is designed to be cloud-native and work robustly and efficiently in real-world
workflows. Vineyard is open-sourced1 and under active development. It is already integrated
or being integrated with more than a dozen data processing systems including PyTorch [52],
TensorFlow [8], PowerGraph [34], GraphScope (distributed graph computation systems) [23] and
Mars (large-scale scientific computation engine) [45].
Contributions & organization.We make the following contributions to facilitate and speed up
cross-system data sharing:
(1) Motivation (§2). We analyze the current solutions for data sharing from the aspects of data
storage medium and data format to reveal the reasons why current solutions fail in complex
workflows.
(2) System (§3). We first describe the opportunity that Vineyard tries to seize. Then we detail the
system architecture of Vineyard, and its components, and discuss the challenges to achieve our
design goal.
(3) Implementation (§4). We detail the implementation of Vineyard from three aspects: (i) A dis-
tributed in-memory object store for composable data structures (§4.1). (ii) The VCDL IDL and
code generator to facilitate the type registration and integration (§4.2). (iii) Locality awareness on
Kubernetes clusters [7] and fault tolerance in cloud environments (§4.3).
(4) Use cases (§5). We provide a set of Vineyard integration use cases with six data processing
systems, which demonstrates the integration friendliness of Vineyard.
(5) Evaluation (§6). An extensive evaluation of Vineyard. We find the following: (i) Vineyard can
boost the end-to-end performance by 3× times on average and reduce the data-sharing time by
28.8× on average compared with its best competitors. (ii) The overhead of Vineyard is negligi-
ble, which only takes about 40 milliseconds to share hundreds of Gigabytes of objects. (iii) The
integration effort is low which only requires about 100 lines of changes for a system.
Limitations and non-goals. Vineyard has a number of restrictions and non-goals. First, Vine-
yard targets at optimizing data sharing across systems for data-intensive workflows. As for
computation-dense workflows such as model training, the end-to-end performance improvement
is quite limited since most of their execution time is devoted to computational kernels. Second,
Vineyard does not provide a global workflow optimizer and always assumes users have chosen
an appropriate workload-specific system for each task, while some prior studies (e.g., Muske-
teer [33]) aim to map tasks to suitable back-end execution systems. Third, Vineyard aims at the
sharing of large immutable intermediate results, while the caching of frequently updated data like
Memcached [20] or Redis [44] is not our goal.

2 MOTIVATION
To enable data sharing among different systems, diverse solutions have been proposed. Their
fundamental differences mainly come from where the intermediate data is stored (i.e., storage
medium), and how the data is represented (i.e., format).

1Vineyard is available at https://github.com/v6d-io/v6d
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Storage medium. In general, existing solutions utilize either main memory or external storage
to share data across systems. However, many challenging issues still exist in handling large and
distributed data under diverse running environments.
Memory. Memory can be used as a medium for sharing data among different libraries and systems
on a single machine. For example, in the PyData ecosystem, libraries, such as Numpy [15] and
PyTorch, can exchange a large tensor as a variable directly within a single Python process with
zero copying. Some multi-process parallel computation systems use shared memory for exchanging
intermediate data across processes. An object store Plasma developed for Apache Arrow [31] and
Ray [49] also allows sharing of immutable data (objects) between processes with simple PUT/GET
operations in shared memory. Memory provides an efficient way to exchange data across systems
on a single machine avoiding unnecessary copying and/or I/Os with external storage. However,
memory-based solutions are difficult to scale. First, intermediate data is required to locate on a
single machine and fit in the main memory, while existing solutions lack the support of distributed
or outsized data, both are pivotal to real-life big data applications. Second, memory-based solutions
sometimes require ad-hoc and specialized integrations between pairs of involved systems/libraries.
External storage. Different from memory, external storage (e.g., local disks, HDFS and Amazon
S3) often provides primitive yet unified file system-like interfaces (e.g., open, read and write).
Furthermore, its capacity can be considered unlimited in cloud environments. As a result, external
storage-based solutions can bridge different systems without intrusive changes to the data process-
ing system itself, and are appropriate to exchange extremely large-scale data. However, compared
with memory-based solutions, the performance of external storage-based solutions is relatively
poor due to the following reasons. First, intermediate data is stored as files in file systems (e.g.,
ORC and Parquet files), while dumping/loading data as files will incur expensive copying and I/O
overheads. Second, each system needs to access files (i.e., a sequence of bytes) through primitive file
interfaces, while high-level data structures contain rich semantics and methods (e.g., the find(key)
method for a hashmap). To keep rich semantics of high-level data structures, each system needs
to build its internal data structures from a sequence of bytes, causing (de)serialization costs. For
example, to execute the complex job shown in Figure 1 over external storage, the costs for data
sharing across systems take over 40% of end-to-end execution time (see §6).

More recently, some work, such as Alluxio and JuiceFS [39], tries to alleviate the high I/O cost in
external storage-based solutions, by caching frequently accessed data in memory and local SSDs
while keeping the less used data in external storage. Unfortunately, its interfaces are based on files,
and still suffer from excessive data copying and (de)serialization overheads. For example, to share
the 200GB neuraltalk2 dataset [46] from Numpy to PyTorch, conducting it over Alluxio in .npy
files requires 656 seconds while the cost is nearly zero with in-memory sharing within the Python
process.
Format. To share intermediate data, systems must agree with the data format, i.e., how the data
should be organized and represented. To this end, much effort has been devoted to defining some
standard data formats to represent commonly used data structures, such as columnar format and
ORC for table-like data, and multi-dimensional array for tensors. With these standard data formats
in place, data processing systems only need to implement adaptors to read/write standard formats.
However, there still exist some circumstances where standard data formats cannot work well.
First, in many cases, there are often some differences between a standard data format and the
internal data structure defined in a specific system. As a result, it takes some transformation and
(de)serialization costs for the data processing system to convert data between the standard formats
and its internal data structures. For example, Apache Dremio [30] uses Apache Arrow as its internal
columnar data format. When facing ORC files, it requires an extra (de)serialization process to write
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Fig. 2. The data structure commonality when (a) the layouts of tensor payloads are the same while only differ
in metadata, (b) the layouts of graph differ between adj list and CSR, while the interfaces defined on them
are similar.

to (read from) ORC files even though ORC is also organized in columnar formats. Second, there
is still a lack of standard formats for many commonly-used data structures (e.g., hashmaps and
graphs). As a result, their implementations vary a lot in different systems. Under such a situation,
an internal data structure has to be serialized into primitive and flat data formats. For example,
hashmaps are usually shared as a sequence of key-value pairs, and then rebuilt from scratch by the
receiver. During this process, high-level data structures lost their semantics (e.g., key lookups for a
hashmap), amplifying the unnecessary transformation and (de)serialization overheads.
Insights. Based on the above analysis, an underlying framework that can make data sharing across
systems more efficient and flexible has to simultaneously satisfy the following requirements.
(1) On the data medium side, it should be able to provide an efficient in-memory data-sharing
mechanism while supporting distributed and outsized data with external storage, and minimizing
data copying, I/O and network overheads.
(2) On the data format side, it should allow developers to easily define and implement new and
complex data structures, and make the data format used for intermediate data consistent with the
internal data structures in data processing systems when possible, to avoid unnecessary overheads
such as data transformation and (de)serialization.

3 APPROACH AND CHALLENGES

Opportunity: many intermediate data structures share some commonalities across differ-
ent systems. In general, a data structure can be conceptually broken down into payloads,metadata

and methods, as shown in Figure 2 (a). The main parts that hold the actual data are payloads,
which correspond to a continuous memory space (e.g., the 1GB buffer in Tensor), and metadata

provide necessary attributes (e.g., .size and .dtype for Tensor) to interpret the payloads. Besides,
methods provide high-level and opaque interfaces (e.g., __getitem__(key) for Tensor) for users
to manipulate the data. We found the data structures in diverse data processing systems do share
some degree of commonalities. They can be divided into the following categories:
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(1) Payload commonality: The memory layouts of the payloads of the upstream and downstream
systems are exactly the same, but only differ in the organization of metadata in the data structure.
For example, DataFusion [28] and Polars [17] have payload commonality, since their underlying
data structures both are based on Apache Arrow. As another example, shown in Figure 2 (a), both
PyTorch and NumPy process tensors. The layout of payload buffers of the tensor type in these
two systems are exactly the same but only differ in metadata. Compared to the payload (1GB), the
space to keep their metadata is negligible. To leverage such commonalities for data sharing, one
can re-create the metadata of the shared object in another system with little overhead, as long as
the (de)serialization, copying and I/O over the payloads between two systems can be avoided (e.g.,
via memory mapping). And such sharing is called payload sharing.
(2) Interface commonality: The layout of payloads of data structures of upstream and downstream
systems differ from each other, but the provided interfaces follow the same logic and semantics.
We can find many interface commonalities in big-data ecology. (i) The index data structures, e.g.,
trees, hashmaps, or filters, can be implemented in different ways, while their exposed interfaces are
similar, e.g., exist(key), size(). (ii) The main abstraction of Spark is a resilient distributed dataset
(RDD), a collection of elements partitioned across hosts of a cluster that can be operated in parallel.
Data structures that implement interfaces over RDD can be processed in Apache Spark without
changing the physical memory layout. (iii) GraphScope and LiveGraph [68] represent graphs in
different ways. However, they both provide adjacency-list-like interfaces on their data structures,
as shown in Figure 2 (b). To leverage this kind of commonality for data sharing, one can write a
wrapper around the methods of objects in the upstream system to provide the interfaces for the
downstream system, instead of a thorough conversion, and such sharing is called method sharing.
(3) In other situations, data structures of upstream and downstream systems are totally irrelevant
or systems do engine-specific optimizations such as manipulating the raw data. For example,
ClickHouse [19] and Apache Doris [29] enable engine-specific optimization such as vectorization
and data compression. It is intractable to share intermediate data between them without a physical
conversion or non-intrusive modification. This kind of conversion often requires time-consuming
data scans and is inevitable in this case.
To seize the opportunity, we propose Vineyard, an off-the-shelf distributed object store for

efficient cross-system data sharing, exploiting both payload and interface commonalities for in-
memory data sharing in cloud environments. At the same time, it insulates users from cumbersome
data alignment boilerplate code by providing simple put() and get() APIs, allowing users to
put objects in a system and get them back in another system without suffering the pain of I/Os,
(de)serialization, annoying glue code, and inefficient cross-language interaction.

3.1 System Overview

Architecture of Vineyard. Figure 3 depicts the architectural overview of Vineyard. Compared
with file system-based data-sharing solutions, Vineyard stores intermediate data as objects, and
introduces a novel data-sharing mechanism to achieve high performance and flexibility while
keeping the cost of integration as low as possible. Overall, Vineyard consists of seven modules:
Vineyard client (labeled by 1 ). Vineyard provides a SDK supporting multiple programming
languages (including C/C++, Python, Java and Rust) to integrate with data processing systems.
With the SDK, an object can be retrieved from Vineyard by its ID via get(), and new objects can
be constructed via put() for other systems to consume later. The object returned from the local
Vineyard is a language-native object (e.g., numpy.ndarray in Numpy) while the payloads of the
object are still kept in the shared memory managed by Vineyard daemon without copy. To achieve
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Fig. 3. System Overview.

these, the SDK includes an IPC client to Vineyard and communicates with the Vineyard daemon on
the same host via the UNIX-domain socket. Besides the IPC client, the Vineyard SDK includes a
RPC client as well to communicate with the Vineyard daemon on remote hosts via the TCP socket.
The RPC client is used to send requests to the Vineyard daemon on remote hosts to complete the
requests sent from peers such as retrieving metadata and migrating an object from/to the local
Vineyard daemon.
IPC/RPC server (labeled by 2 and 3 ). An IPC server listens to the requests from the clients in the
same host. It then interacts with the object manager to complete the requested tasks such as object
creation, accessing and deletion. Requests are organized into queues and consumed asynchronously
and concurrently. A completion reply is sent to the client when a request is done. For example, a
client that sends a GET_OBJECT request will receive a reply with metadata dictionary and a set of
file descriptors, then it can create memory-mapped blobs first and construct the object with the
metadata and the blobs. An RPC server listens requests from clients in remote hosts to complete
the requests sent from peers such as retrieving metadata and migrating an object from the remote
Vineyard daemon.
Object manager (labeled by 4 ). The payloads (blobs) of an object are stored in the in-memory
Vineyard object store, which lives in a Vineyard daemon process on every host, thus different
computing processes running on the same host can share data through the object store. The
object manager takes charge of orchestrating these payloads such as allocation, movement, seal
and deletion. Note that an object is mutable after creation and invisible to other processes until
it is sealed. Once sealed, the object becomes immutable, i.e., cannot be modified anymore, and
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visible to other processes. There are two main reasons: (i) immutable objects suffice for most data
analytics [40]; and (ii) they reduce the complexity of concurrent data accesses.
Type registry (labeled by 5 ). In order to support cross-system object accessing, Vineyard provides
a type registry for users to register user-defined data structures, a.k.a. how the payloads and
metadata constitute an object, and how to reinterpret an object. Like Protobuf, Vineyard provides
an IDL (intermediate description languages) named VCDL (detailed in §4.2) for users to define their
customized data structures. When a system tries to get/put an object from/to the object store, it
will lookup the registry to transform the registered type in Vineyard into its own internal type
or vice versa. The type registry is implemented as a key-value map, with the name of the type
as the key, and the concrete description of this type as the value. For example, the key may be
“foo::bar::Graph::1.10.0”, and the value is a set of VCDL files.
I/O connector (labeled by 6 ). The interfaces of the I/O connector are provided to enable pluggable
adapters, which allows Vineyard to load/store data from/to external storage such as local filesystem,
HDFS and S3, in common formats like Parquet, ORC, HDF5 and CSV, and migrate data from remote
Vineyard daemon over networks. Built on the I/O connector, Vineyard supports to spill cold objects
under high memory pressure, and load from external storage back when those spilled objects been
requested, as well checkpoint/reload to/from external storage for fault-tolerance. In addition, cache
and prefetch are adopted to alleviate the I/O overheads in these cases.
Metadata service (labeled by 7 ). Payloads of objects are stored as blobs in local shared memory
while the metadata of objects are stored in a distributed, consistent key-value store (e.g., etcd [22]
and Redis) for object resolution. Metadata is essentially key-value pairs that describe how a group
of blobs constitute an object. The metadata service guarantees the synchronization and consistency
of metadata across the cluster, and metadata connects correct blobs when the objects are created,
deleted, or migrated from a remote host. The consistency also allows Vineyard to support distributed
objects called “collection”, which is composed of objects on multiple hosts across the cluster as well
as external storage (see details in §4.1).

Vineyard is designed to be extensible, and its functionality is divided into several loosely-coupled
modules for users to customize the integration. (i) Vineyard provides an IDL named VCDL to enable
users to register customized data structures succinctly. (ii) APIs for I/O connectors to exchange
Vineyard objects with other storage media, file formats and networking stacks. (iii) Vineyard
also provides useful modules to facilitate the integration. For example, Vineyard provides format
converters for conversions of common data formats (e.g., row-based tables to/from column-based
ones), and FUSE (Filesystem in userspace) drivers [43], to provide file system APIs to project
Vineyard objects to/from common file formats (e.g., Parquet, ORC and CSV). Incorporating these
modules in a workflow, Vineyard can liberate users from the tedious task of implementing and
integrating such logic with individual data processing systems.

3.2 Challenges

C#1: How to share complex objects efficiently. At the center of Vineyard, the way it organizes
and serves objects is crucial to its efficacy. It is challenging and non-trivial as well. There are
three key criteria to meet: (i) Support big data. Many intermediate data is larger than the memory
capacity of a single machine or even the aggregated memory of a cluster. Vineyard should support
large objects, making it able to take advantage of distributed computing and external storage. (ii)
Object composability. Many data structures, e.g., graphs, are complex, and composed of several
other objects (e.g., arrays and hash indices are used in graphs). In addition, it is very common that
a task incrementally creates a new object from an existing one with small changes. These two
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characteristics require to express an object in a composable fashion. (iii) High efficiency. As we
discussed, the performance of data sharing is largely affected by (de)serialization and extra memory
movements. The object store of Vineyard needs to be designed to minimize such costs.
C#2: How to reduce integration effort. For cross-system data sharing, a downstream task does
not understand the data type of the object put by its upstream tasks, unless Vineyard provides a
mechanism to register the type. To this end, there are three key requirements to satisfy: (i) Avoid
intrusive integration. Vineyard should avoid hard-coding the type into the downstream task, by
modifying its source code or re-compilation. (ii) Serve the polyglot workflow. As a language-agnostic
framework, Vineyard should ensure cross-language interoperability to achieve high flexibility and
performance in ubiquitous polyglot workloads. It is challenging even with standard FFI (Foreign
Function Interface), as language boundaries often add performance overheads because the cross-
language interface has to marshal foreign objects. (iii) Less boilerplate code. Vineyard needs to
insulate users from wrapping guest-language functions with annoying glue code by automatically
generating the boilerplate code to achieve high flexibility.
C#3: How to work in cloud-native environments. Vineyard is designed as a daemon to serve
diverse applications in cloud-native environments. Therefore, it is important for Vineyard to (i)
help the workflow scheduler to consider data affinity when launching a new task and automatically
prefetching the required data into memory when the downstream tasks are scheduled to a group
of new hosts; (ii) handle exceptions such as shutdown, operation abort, and memory exhaustion
to work robustly in production environments; and (iii) provide stable performance in a variety of
scenarios such as burst objects pouring, and storing extremely small/large objects. The object store
of Vineyard should hide the system complexity from users and handle the above cases gracefully.

4 DESIGN AND IMPLEMENTATIONS
In this section, we introduce key designs and implementations to overcome the above challenges.

4.1 Sharing of Complex Objects Efficiently
As discussed inC#1 of §3.2, sharing complex objects needs to simultaneously meet the requirements
of big-data, composability, and efficiency. First, we introduce the data model of Vineyard objects.
Next, we introduce how these goals are achieved.
Datamodel.Vineyard objects are chunk-based, distributed, and immutable. From common practices
of big data processing, we observed that large-scale data is often chunked and distributed processed
in chunk-granularity. Chunk-granularity brings flexibility and efficiency, and the data model of
Vineyard aligns with such a design. More specifically, the objects in Vineyard can be divided into
three categories:
(1) Blob. A blob is a big amorphous binary data structure stored as a single entity. Blobs are typically
buffers that consume consecutive memory. In Vineyard, blobs are basic units to constitute the
payloads of a complex object.
(2) Local object. A local object is a set of blobs with metadata to describe how these blobs constitute
a complex object. The metadata is a dict-like structure, with field names as keys and primitive
types (e.g., int, double and String), blobs, or other objects as values. Values of the same type can
be repeated zero or more times for a given key, and their order is preserved (like Protobuf). Local
objects are conceptually similar to the aforementioned chunks in data processing systems. For
example, a local object can be a partition of a RDD in Spark [65], a part of a table in ClickHouse,
or a partition of a graph in PowerGraph. “Local" means the object can fit in the memory of the
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1 template <typename T>
2 class Iterator{
3 // Get the next object in the collection.
4 iterator next();
5 // Get the next local object in the collection.
6 iterator next_local ();
7 };
8

9 template <typename T>
10 class Collection{
11 // Return the reference of a specific local object.
12 iterator at(int idx);
13 // Return the number of objects of the collection.
14 size_t size();
15 // Return the iterator of the first object.
16 iterator begin ();
17 // Retrun the iterator of the first local object.
18 iterator local_begin ();
19 // Return the iterator of the past -the -end object.
20 iterator end();
21 };
22

23 class CollectionBuilder{
24 // Put the object of given id to the collection.
25 void put(size_t idx , ObjectID id);
26 // Seal the collection to prevent mutation.
27 void seal();
28 };

Fig. 4. The APIs of Collection.

local host, i.e., once a client tries to GET a local object, Vineyard will first make sure all its blobs
present in the host memory before sharing them through memory mapping.
(3) Collection. A collection is a set of local objects of the same type with metadata to describe how
these local objects logically constitute a global object andwhich hosts these local objects locate. Parts
of a collection’s objects may be stored in external storage or on remote hosts. Vineyard provides
APIs for users to pick a specific local object from a collection or just iterate on all interior objects
or local ones as shown in Figure 4.
Support big data scenario. To store large objects as collections in either external storage or
distributed memory, Vineyard provides corresponding mechanisms to move data between external
storage and memory or between different hosts.
Moving blobs between external storage and memory. It is common that data cannot fit in memory in
big data applications for users who want to persist the data as checkpoints. (i) Vineyard provides a
spilling mechanism that can swap some blobs from memory to external storage or remote object
store when memory pressure is high. The spilling process can be triggered automatically when
either Vineyard fails to allocate new shared memory blobs or the memory usage reaches a specified
threshold. With I/O connectors, Vineyard can leverage various external storage systems, e.g., local
filesystem, HDFS, and S3 for spilling. By default, the least recently used (LRU) policy is adopted for
automatic spilling. Users can keep required objects in memory during computing with the pin()
API to prevent object from being spilled. Users can also rely on the auto-spilling by utilizing basic
put()/get() APIs, or they can fully manage the spilling process to control the location of each
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blob at any time with the evict() and load() APIs to lest auto-spilling introduces unpredictable
overheads and deliver guaranteed performance. Further, users are allowed to give hints when
getting Collection to indicate the expected access patterns, e.g., for a sequential scan, the I/O
workers will pre-reload the spilled blobs to overlap the computation and communication and reduce
the I/O overhead. (ii) For checkpointing, Vineyard provides a save method for users to copy the
entire local object or collection into external storage. A load method is provided to restore an
object from a checkpoint. When Vineyard clients send requests to save or load an object, the I/O
worker will block other requests until the process completes to avoid data race conditions.
Fetching blobs from remote hosts. Since objects of a collection are scattered in multiple hosts, appli-
cations may access a non-local object. To support such remote object accessing, the Vineyard object
manager first queries the location of the object in metadata service, then it requests the I/O connec-
tor with the object identifier and the location, and finally, the I/O connector will communicate with
the data holder to access the object. The fetched objects will be stored in the local object manager
and this object will be marked as local. The fetching can be triggered automatically or manually in
either asynchronous or synchronous mode. After receiving the fetching request, the I/O connector
will fully handle the data movement. Since the I/O connector allows developers to integrate diverse
network libraries such as verbs for RDMA, gRPC [37], or DPDK [26], it is easy to achieve high
performance in diverse scenarios.
Object composability To achieve composability, Vineyard adopts a decoupled design, where the
metadata of objects are managed separately from the payloads. The metadata of each object (identi-
fied by an object ID) is represented as a set of key-value pairs. Taking the Collection<DataFrame>
(a simplified dataframe) shown in Figure 5 as an example, it is represented by its unique ID “0001”,
names of its two member objects (“0012” and “0013”) located on different hosts, and each object
has two columns (namely “UserID” and “ItemID”) with two objects IDs associated with two Array
objects. Each Array object corresponds to a column of the dataframe, and is linked to a blob that
represents the payload of the Array object. The Array objects can be accessed either independently
or as a part of the DataFrame object or as an indirect part of the Collection<DataFrame> object.
Recall that objects are immutable in Vineyard, to add a new column Amount to the DataFrame
object 0012, Vineyard simply create a new object “0014” to replace the old object “0013” with
an extra column “0120” and reuse the columns “1005” and “1006”, without copying the entire
DataFrame object, saving memory and improving performance.

This decoupled design brings two benefits to Vineyard: (i) referring to the same blob by different
objects is allowed, without worrying about data race and consistency issues since objects are
immutable in Vineyard, and metadata is managed separately. (ii) It is very common that a data
analytics job creates a new object 𝑂 ′ from an existing object 𝑂 with small changes and keeps both
𝑂 and 𝑂 ′ in Vineyard for later processing. Compared with duplicating the same payloads twice,
incrementally creating a new object 𝑂 ′ from an existing object 𝑂 with small changes is more time
and space-efficient.

Vineyard provides out-of-the-box efficient implementation for de-facto standard data structures,
e.g., Vector, HashMap, Tensor, DataFrame and Graph in the SDK, and integrates those data types
with widely-adopted data processing systems, e.g., Numpy, Pandas, PyTorch. Thanks to the decou-
pled design, these data structures can be directly used as the basic building blocks when users
attempt to construct and share more complex system-specific data structures in their applications.
Efficiency. With the decoupled design, the overheads of creating and accessing an object in Vine-
yard can come from two sources, namely dealing with the payloads and metadata. For most common
data types, the vast majority of the overheads are the payload part. For example, the DataFrame
objects shown in Figure 5 can represent a table with tens of billions of records in only a handful
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Fig. 5. Object Storage and Data Sharing.

of key-value pairs as metadata (less than 1KB) while the size of blobs is greater than tens of GBs.
To achieve high efficiency, the blobs are directly memory-mapped to the clients by Vineyard for
accessing payloads with zero-copy. Generally, the payload data are managed by individual systems
before handing over to Vineyard, therefore at least one copying is required to move the data into
the Vineyard object manager for the first task in each workflow. Fortunately, it is still possible to
optimize out such copying. Vineyard provides a specialmemory allocator to allow dynamic memory
allocation directly on its shared memory pools from processes of the data processing systems. The
memory allocator serves as a drop-in replacement for the default malloc/free functions using
the LD_PRELOAD [3], if the target systems allow the replacement of their own memory allocators.
When put() native objects to Vineyard, the client will skip copying the blobs that already reside
on Vineyard’s shared memory and link metadata to the existing blobs.

4.2 Minimize high integration effort
In §4.1, we have described how objects are organized in Vineyard, and explained how Vineyard
shapes the performance with the help of object composability. However, sharing objects between
systems via memory mapping in real-life workflows is still intricate. (i) To exploit payload common-
ality, users have to construct from the metadata and payloads manually since there is no standard
way to cast a type from one system to another. For example, in Figure 2 (a), users store a PyTorch
Tensor as a blob into Vineyard, then get and reinterpret it as a NumPy ndarray. Such manual
integration is ad-hoc and users have to write many error-prone and boilerplate codes. Worse still,
such integration is not extensible: to share data between𝑀 upstream tasks and 𝑁 downstream tasks,
repeatedly conducting𝑀×𝑁 integrations case by case can be daunting enough to deter the usage of
Vineyard for larger workflow. (ii) To exploit interface commonality, users should first introduce the
metadata and methods of the intermediate data structure into a downstream task, then implement
a wrapper to enable method sharing. For example in Figure 2 (b), to share a livegraph::Graph
to GraphScope, users first need to link LiveGraph as a library dependency during building, then
forward methods of GraphScope::Fragment like g.edges(v) to methods of livegraph::Graph
like g.get_edges(v). Similarly, such integration is also not extensible. Enabling method sharing
in polyglot workflows requires further effort. For example, although Griaph.GraphType (Java
class) and GraphScope::Fragment (C++ class) both represent graphs in their engines respectively
and have similar interfaces, nevertheless, these systems still have gaps that need users to bridge
manually, i.e., different memory management models in different programming languages. One
way to achieve it is to re-implement the logic or implement an FFI (Foreign Function Interface)
wrapper of the methods of GraphScope::Fragment in Java, then wrap the methods of Java-version
GraphScope::Fragment to imitate behaviors of methods of Giraph.GraphType, which is hard to

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 200. Publication date: June 2023.



Vineyard: Optimizing Data Sharing in Data-Intensive Analytics 200:13

1 // type.h
2 template <typename T>
3 [[ shared ]] class Array {
4 private:
5 [[ shared ]] Blob b;
6 size_t len; // non -shared property
7 public:
8 [[ shared ]] T getItem(size_t idx) {...}
9 };
10

11 template <typename T>
12 [[ shared ]] class DataFrame {
13 private:
14 [[ shared ]] Repeated <String > names;
15 [[ shared ]] Repeated <Array <T>> cols;
16 public:
17 [[ shared ]] Array <T> getCol(size_t idx){
18 return cols.get(idx);
19 }
20 };

Fig. 6. An example of VCDL.

maintain and optimize. Once the methods change in one version, users have to re-implement them
again to keep the consistency. To be more specific, the integration burden stems from the following
two aspects:
(1) No common formats for some data structures between upstream and downstream systems. With-
out a common format, users have to manually implement low-level memory assignment case by case.
(2) Re-implement methods for method sharing. Since upstream and downstream systems reside in
different processes (or even implemented with different languages), users require to re-implement
the logic of shared complex objects to enable method sharing.
Vineyard Class Description Language. To liberate users from such an interminable integration
burden, Vineyard provides an IDL (intermediate description languages) named Vineyard Class
Description Language (VCDL). Inspired by Protobuf, VCDL allows users to describe the shared
objects and the methods over objects once, then generates the boilerplate codes automatically for
different programming languages. With VCDL, users can define and implement new types of data
structures succinctly. To ensure the expressivity of VCDL, we design VCDL as a C++ dialect, which
keeps a majority of the features of C++, as shown in Figure 6. Like C++ class definition, a data
structure defined with VCDL (i.e., class) contains members and methods; objects are organized
in a composable fashion: they can be other user-defined data structures. To enable Vineyard code
generation, we only add several built-in types and directive annotations into the dialect.
Built-in data types. VCDL recognizes primitive types such as int, double and String as metadata
entries. Besides primitive types, VCDL predefines object-related types such as Blob and Repeated
to facilitate users to describe the components of their objects. A Blob represents a large binary
object with a given size, and is used to describe the actual payload of a shared object. A Repeated
is a sequence container that repeats its field any number of times (including zero), and the order
of the repeated values will be preserved. For example, column names of a dataframe (line 6 in
Figure 7). This concept is from Protobuf, and it is helpful to group a bunch of objects together to
achieve composability. With the primitive types, predefined types for objects and the composable
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1 // builders.h
2 template <typename T>
3 [[ builder(DataFrame)]] ColWiseDataFrameBuilder
4 : public DataFrameBuilder {
5 private:
6 Repeated <String > names;
7 Repeated <ArrayBuilder <T>> col_builders;
8 protect:
9 DataFrame seal() {
10 DataFrameBuilder :: set_names(names);
11 DataFrameBuilder :: set_cols(col_builders);
12 return DataFrameBuilder ::seal();
13 }
14 public:
15 void addCol(ArrayBuilder <T> col , String col_name) {
16 names.push_back(col_name);
17 // Enable zero -copy if possible.
18 col_builders.emplace_back(col);
19 }
20 };
21

22 template <typename T>
23 [[ builder(DataFrame)]] RowWiseDataFrameBuilder
24 : public DataFrameBuilder {
25 private:
26 Repeated <String > names;
27 Repeated <ArrayBuilder <T>> col_builders;
28 protect:
29 DataFrame seal() {
30 DataFrameBuilder :: set_names(names);
31 DataFrameBuilder :: set_cols(col_builders);
32 return DataFrameBuilder ::seal();
33 }
34 public:
35 void setSchema(Repeated <String > schema) {
36 names = schema;
37 cols_builders.resize(names.size())
38 }
39 void addRow(Repeated <T> row) {
40 for (size_t i=0; i<row.size(); ++i) {
41 cols_builders[i]. push_back(row[i])
42 }
43 }
44 };

Fig. 7. An example of VCDL builders.

design, complex objects in data processing systems can be hierarchically mapped to Vineyard’s
object types and make it convenient to integrate and share with Vineyard.
Annotation shared. In VCDL, classes that annotated with shared annotation mean that systems
can PUT/GET objects of these types to/from Vineyard for sharing. All of their members with shared
annotation will be kept as metadata in Vineyard and shared across systems and hosts. Other mem-
bers without annotations can be reconstructed from members with shared annotation, e.g., len
(line 6) can be re-calculated by dividing the size of Blob b by the size of type T without needing
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to keep its value in Vineyard. All object types that are annotated with shared in VCDL must be
immutable, since objects in Vineyard cannot be modified once been sealed.
Annotation builder. To construct an instance of the type (e.g., DataFrame) defined by VCDL, users
can implement specific classes tagged with builder annotations (e.g., builder(DataFrame)), and
provide methods for an upstream task to build the data structure. As shown in Figure 7, users can
write different builders to support a variety of scenarios. A seal() method must be provided in
each builder to return the final immutable object from it. Base builders that directly interacts with
the Vineyard client are automatically provided by Vineyard (e.g., ArrayBuilder, DataFrameBuilder).
As mentioned in §4.1, Vineyard provides a memory allocator to allow memory allocation on its
shared memory pools during the builder processes, to achieve zero-copy data sharing. VCDL
code generation can leverage such zero-copy ability. For example, in the line 18 of Figure 7, the
ArrayBuilder will check if the column is already in the Vineyard’s shared memory poll, and avoid
copying when possible. Builders can be nested, since Vineyard objects are composable (e.g.,member
col_builders of class ColWiseDataFrameBuilder<T> in Figure 7).
Code generation.With VCDL, Vineyard can generate most of the glue code required by integration.
Thus, users can focus on the data structure they want to share. Specifically, the benefits of Vineyard
code generation are three-fold: (i) produce common formats; (ii) generate boilerplate code; (iii)
enable cross-language optimizations.
Producing common formats. To get an object put by an upstream system, the downstream system
should understand the data type of the object. For systems that adopt C++ as their programming
language, they can directly invoke the methods of data structures defined in VCDL, as VCDL is a C++
dialect. To work with systems written in other languages, Vineyard will generate a new class defini-
tion in their languages to access the methods and implementations defined in VCDL. VCDL wraps
classes described in VCDL as native classes in multiple guest languages instead of re-implementing
them in another language. It first leverages libclang [42] to get the ASTs (Abstract Syntax Trees) of
VCDL classes to figure out the classes, members, and methods that need to be exposed to the guest
languages for data access and creation. It then maps each class annotated with [[shared]] to a
native data type (e.g., interface for Java, struct for Rust) in the guest languages, and generates
an FFI wrapper for each method that is annotated with [[shared]] in VCDL. Currently, VCDL sup-
ports C/C++, Java, Python and Rust as guest languages. When adding support for a new language,
VCDL only requires to develop a code generator that handles the primitive type mappings and can
generate classes and method wrappers in the guest language from the ASTs generated by libclang.
Generating boilerplate code. As discussed above, without Vineyard’s code generation, users who
want to share intermediate data between systems have to write a lot of boilerplate code like field
getter and setter, which is common in cross-language wrapper generators e.g., SWIG [18]. With the
VCDL code generator in place, Vineyard first generates a common type of the class with annotation
shared, then generates getters and setters for members tagged with annotation shared. Given a
common type between upstream and downstream systems, users can always get the type defined
in VCDL without re-implementing them manually. Moreover, the VCDL code generator can also
handle the generic types (i.e., the template in C++ and Generics in Java) across languages. Gener-
ics is an essential language feature for the implementation of data processing systems. However,
the programming principles of generic may vary a lot in different programming languages (e.g.,
C++ and Java), and it is non-trivial to generate safe and efficient cross-language interfaces. Instead
of simply mapping C++ template instantiations to parameterized types in Java, the VCDL code
generator generates a unique class in Java for each instantiation of the same C++ template to
avoid type errors in native code.
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Enabling cross-language optimizations. To ensure the performance, the VCDL code generator en-
ables optimizations to be applied across the boundaries between languages. The VCDL code
generator reads annotated VCDL files and creates wrapper code (glue code) to make the corre-
sponding C/C++ libraries available to other guest languages or to extend C/C++ programs with
a scripting language. Code generated for LLVM-based languages (e.g., C/C++, Rust) can be com-
piled into LLVM bitcode (IR), and can be optimized and linked at the IR level with the help of
the LLVM LTO (link-time optimizations). For JVM-based languages, translated functions can be
optimized (e.g., inlining) with the code of the target data processing system by JVM JIT. In addition,
it also allows a large proportion of simple yet performance-critical routines (e.g., iterators) can be
translated to efficient JVM bytecode. Fortunately, with the sun.misc.Unsafe mechanism of Java,
large payloads/blobs can be also memory mapped off-heap and efficiently accessed from JVM. If
functions cannot be translated, Vineyard will fall back to JNI (Java Native Interface) calls.
Discussion. With VCDL, integration is intuitive. Users first define required data structures (types)
in VCDL, then they can directly implement their applications on generated data structures, or
convert the defined data structures to the existing native types in custom wrappers. With payload
sharing, users just need to “cast" the generated types to the native types. Such casting is zero-
copy and only requires to manipulate their metadata. With method sharing, users need to wrap
methods of native types with methods of generated types, which is also zero-penalty. If users fail
to provide VCDL files for some reasons, Vineyard provides a FUSE driver that encapsulates the
Vineyard client to provide file system APIs, as shown in Figure 3. Since the FUSE driver provides
filesystem interfaces, objects have to be serialized as buffered bytes when users read/write objects
from/to Vineyard, while buffered bytes will be automatically deserialized as objects when the file
handle are closed.

4.3 Working in cloud-native environments.
In the cloud-native era, big-data analytics jobs are usually deployed as containerized applications,
which are orchestrated by workflow engines (e.g., Apache Airflow [27], Dagster [21], Kedro [9]),
and managed by Kubernetes. Vineyard is deployed as a Deployment on Kubernetes and managed by
the Kubernetes Operator [14] vineyard-operator. After applications have been submitted to a Ku-
bernetes cluster, Vineyard will place the application pods near where its required inputs are located.
Besides, by integrating with the workflow orchestration engine, Vineyard archives application-level
fault tolerance. In this subsection, we will discuss how Vineyard addresses challenges proposed
in C#3 in §3.2 in cloud-native environments.
Locality awareness on Kubernetes. Vineyard archives alignment between application workers
and their required inputs by integratingwith the scheduler of underlying cloud-native infrastructure,
i.e., Kubernetes. The collections of Vineyard objects that will be shared across hosts are abstracted
and organized as Custom Resource Definitions (CRDs) [13] in Kubernetes, making them observable
and accessible from the scheduler component of the Kubernetes cluster. Developers can specify the
required input objects for a task in the specification by the k8s.vineyard.io/required, which
indicates the prerequisite tasks that generated the required inputs for this task. Once the upstream
tasks have created outputs as CRDs, the current task itself will be ready for being scheduled. As
shown in Figure 8, the task B requires a CRD of type DistDataFrame<int> generated by task A.
Once the CRD generated by task A is available, task B will be ready for being scheduled..
Vineyard implements a data-aware scheduling policy in a scheduler plugin for Kubernetes [5].

Specifically, given a task, Vineyard partitions required collections into local object collections and
assigns collections of local objects to workers of this task. The scheduler plugin then inspects the
location metadata from CRDs of those local objects and assigns the highest priority to the host
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apiVersion: apps/v1

kind: ReplicaSet

metadata:

  name: A-extract

spec:

  replicas: 4

  template:

    spec:

      containers:

      - image: mysql-dumper:latest

  ...

apiVersion: apps/v1

kind: ReplicaSet

metadata:

  name: B-PowerGraph-PR

  labels:

    k8s.orchard.io/required:

    - created-by: A-extract

      type: DistDataFrame<int>

    - ...

spec:

  replicas: 4

  ...

  

A B

 $ kubectl get objects.orchard.io -ltype="DistDataFrame<int>"

NAME                 TYPE                  CREATE-BY    AGE

o000052f987f48706    DistDataFrame<int>    A-extract    1s.

Fig. 8. Program a Workflow DAG on Vineyard

where the required local objects are located for each worker of this task. In this way, the scheduler
can respect the locality of the required inputs and reduce the data transfer costs. As the cluster
resources are dynamically changing and tasks may have their own access pattern on distributed
collections, remote data accessing is unavoidable. Vineyard’s Collection abstraction in §4.1 fits
such scenarios, and required objects will be migrated from remote instances by Vineyard when
needed. In environments where external Kubernetes scheduler plugin is not allowed to be deployed,
Vineyard provides a command line tool vineyardctl which accepts the workflow specification in
YAML format and injects the node affinity annotations into the specification to route tasks as near
to where their required inputs been placed as possible.

Vineyard implements workflow isolation with Sessions, which is aligned with the Namespace
mechanism in Kubernetes. Multiple sessions can be created in the same Vineyard cluster and each
session can be connected via its own UNIX-domain socket. Vineyard clients can only see and
manipulate objects in the connected session. When a workflow finishes and intermediate data can
be dropped, removing a session will clean up all objects in it.
Fault tolerance and data consistency. Failures are inevitable for big data analytics in a cloud-
native environment. Designed as an object store for intermediate data, Vineyard does not replicate
objects but provides the save(ObjectID,path)API and users can insert checkpoint tasks into their
workflows. Vineyard has been integrated with the failover mechanism of workflow orchestration
engines. When application failure happens, the results produced by the last succeeded step are still
kept in Vineyard and the workflow scheduler decides whether to reload data from checkpoints
with the load(path) API and rerun from the failed steps or restart from scratch.

Vineyardmaintains an object dependency tree in metadata service and keeps a periodic heartbeat
between instances. When Vineyard instance failure happens the heartbeat connection will be lost,
the failure would be detected by other instances and all objects that depend on objects resides
on the failed instance will be dropped recursively across the cluster. Tasks that get involved with
the garbage-collected objects will be marked as failed and the workflow scheduler will decide
whether to reload data from the last checkpoint and rerun affected tasks or propagate the error to
users. Vineyard uses external key-value storage (e.g., etcd [22], Redis, or Kubernetes CRDs) as the
metadata service backend, which is ACID-compliant and supports high-availability deployment.
Thus, the consistency and availability of metadata will not be affected by Vineyard instance failures.
Usage patterns of big data systems. Big data analytics usually involves two kinds of objects:
several large objects and many small objects. For extremely large objects, Vineyard provides the
Collection abstraction mentioned in §4.1 where large objects are organized as a sequence of local
objects and can be handled by Vineyard as long as the local object can be fit into the memory of
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a single machine. Local objects that are not accessed by the data processing tasks can be spilled to
external storage and will be automatically reloaded when been requested. Vineyard uses memory
mapping to share a local object between clients and the server, thus the runtime overhead of get()
is a constant no matter how large the local object is. For extremely large volumes of small objects,
e.g., millions of scalars and short bytes, Vineyard inlines their payloads into metadata to mitigate
shared memory fragmentation, and Vineyardmetadata service can process many metadata requests
simultaneously. Moreover, in Vineyard only objects that need to be shared between tasks will be
persisted to the metadata service backend to reduce the overhead of creating too many entries.
Objects that are only used by a single task will be kept in the local Vineyard server and will not
be synchronized across the cluster.

5 USE CASES
This section describes some use cases for integrating Vineyard into data processing systems. Recall
that we introduce three types of commonalities for intermediate data across systems in §3. We first
choose three representative examples, each for one type of commonality, to show how Vineyard
can be easily and non-intrusively integrated to bridge different data processing systems.
Dask and PyTorch. Dask is a widely used package for distributed scientific computing. PyTorch
is an efficient distributed machine-learning framework that operates on Numpy-like tensors with
built-in GPU and autograd support. It is common to use Dask for data preprocessing and PyTorch
for model training in machine learning applications. To share data from Dask to PyTorch, Dask
generates Collection<VYTensor> in Vineyard, and PyTorch consumes the Collection batch-by-
batch for training. Specifically, Dask represents each local object in the Collection as NumPy’s
ndarray, which shares the same memory layout with PyTorch’s Tensor. Therefore, the integration
is straightforward. (i) We implemented a wrapper for numpy.ndarray to build VYTensor by coping
the blobs in numpy.ndarray to Vineyard’s shared memory as blobs, and construct VYTensor’s
metadata using properties of the numpy.ndarray object. If allocator hooks are enabled, the copy
of blobs can be further eliminated as the numpy.ndarray already resides in Vineyard’s shared
memory. (ii) We implemented a wrapper to construct torch.Tensor from VYTensor using the
blobs and metadata, without deserialization, data transformation and memory coping, as VYTensor
and torch.Tensor share payload commonality. (iii) Further, we implemented two wrappers to
handle collections, where the former builds a Dask’s distributed tensor as Collection while the
latter resolves a Collection to a torch.utils.data.Dataset. The integration takes 30 lines of
Python code for Dask and 58 lines of Python code for PyTorch.
GraphScope andGraphX. Both GraphScope and GraphX are distributed graph processing systems.
GraphScope provides an efficient graph data structure (Fragment) implementation and a set of
standard built-in algorithms with superior performance, whereas GraphX supports various user-
defined algorithms and has been deployed earlier and widely deployed. It is common in our
organization where GraphScope is used to execute some standard algorithms and GraphX is
deployed for user-defined algorithms in a single workflow. The graph data structure in GraphScope
and GraphX has completely different memory layouts but roughly the same APIs (interfaces),
e.g., Fragment.Vertices() and Graph.vertices(). These two graph processing systems are
implemented in different programming languages, in C++ and Scala, respectively. As described
in §4.2, we implemented a thin C++ wrapper over VYFragment for GraphScope, and a wrapper
over the generated JNI bindings by VCDL to align with GraphX’s APIs. Thanks to optimizations
described in §4.2 that ensure the efficiency of the JNI bindings, the integration finally removes
the cost of graph data transformation and archives 2∼10× speedup in running GraphX algorithms
directly on GraphScope’s graph structure. To align the graph data structure in these two systems
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with Vineyard, it takes 108 lines of C++ code for GraphScope and 208 lines of code for GraphX for
implementing the straightforward wrappers over VYFragment defined using VCDL.
Mars and ClickHouse. Mars is an open-source framework that scales Numpy and Pandas com-
putation engines to large clusters. ClickHouse is a distributed SQL engine for running interactive
queries over big data. The former executes analytics tasks described operations over VYDataFrame
using Python, and the latter is utilized for ad-hoc SQL queries. Without Vineyard, to bridge these
two systems, users usually need to save the result from Mars to external storage, then load it back
to ClickHouse for mixed computations, incurring large I/O and data transformation costs. Mars
has been integrated with Vineyard and each chunk of its distributed dataframe is a VYDataFrame
object, composing a Collection across the cluster finally. However, due to the highly customized
data layout in ClickHouse’s MergeTreeTableEngine, it is non-trivial to integrate a plain columnar
data structure into ClickHouse. Vineyard provides a FUSE driver which provides a filesystem view
for objects stored in Vineyard, where a VYDataFrame can be read as a Parquet or ORC file using
the standard POSIX file system interfaces. Upon the FUSE driver, ClickHouse can directly consume
those VYDataFrame objects as Parquet files using its built-in Parquet reader, avoiding the cost
of expensive I/O between external storage, without any modification to existing data processing
engines. Further, ClickHouse can pass chunk access patterns (e.g., sequential scan) as hints to
Vineyard using the standard ioctl() API [2] to enable Vineyard to preload chunks that will be
accessed shortly from external storage back to memory when spilling happens, improving the
overlapping of computation and I/O time to archive better performance.

6 EVALUATION
In this section, we report the performance of Vineyard over real-life complex data analytics jobs,
micro benchmarks about optimizations, the Vineyard integration with various data processing
systems, as well as our experience and observations of deploying Vineyard in a production envi-
ronment. The test bed is a Kubernetes cluster with over 1000 hosts. Each host is equipped with 2
Intel 8269CY CPUs, 768GB RAM, 1TB SSD, and 50G NIC with RoCE support.
Data-intensive analytics jobs. We choose three real-life workflows to evaluate Vineyard:

(1) A node classification job on citation network. Given the ogbn-mag data [38], we build a heteroge-
neous citation network from Microsoft Academic Graph. To predict the class of each paper, we
building a machine learning pipeline and apply both the attribute and structural information of
graph data. The workflow involves graph analytics, graph neural network inference and subgraph
extraction, and consists of the following steps: (i) defining graph schema and loading the graph;
(ii) running graph algorithms (K-core and triangles counting) in libgrape-lite [24] to generate
more features for each vertex in the graph; (iii) executing a GNN model for vertex classification in
GraphLearn [66]; and (iv) querying the concerned subgraph structure in GAIA [53].
(2) A customer revenue prediction job. Based on user visiting behaviors from Google Play Store [1],
this job leverages a random forest model after several data cleaning steps to predict the per-user
revenues. The workflow contains: (i) cleaning the dataset (e.g., dropping missing values) using
Presto SQL and combining necessary feature columns to a feature table; (ii) predicting the per-user
revenues using a pre-trained random forest model; and (iii) adopting the prediction results with
further data analysis like the correlation between revenues and user devices. This workflow consists
of 16 tasks which involve Presto [56], Pandas [16] and scikit-learn [55].
(3) A fraudulent user detection job. As shown in Figure 1. Given a set of transaction records (i.e.,
user-item pairs), the attributes of users as well as some users marked with known fraud labels, this
job aims to detect more users involved in fraud. The workflow consists of: (i) creating a bipartite
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Table 1. Results for End-to-end time & Data sharing time& Memory footprints.

Jobs Statistics End-to-end time (s) Data sharing time (s) Memory footprint (GB)
# Size (GB) S3-like Alluxio Vineyard S3-like Alluxio Vineyard S3-like Alluxio Vineyard

Graph Processing 255.5 5473.9 3978.4 1403.1 1797.5 411.4 6 1474.7 1684.9 1219.2
Revenue Prediction 170.6 4472.4 1088.5 439.1 4151.2 767.3 117.9 311.8 526.9 290.1
Fraud Detection 617.9 16669.2 4401.6 1767.7 15137.6 2869.2 235.3 1120.8 1738.7 785.4

graph from the transaction records, where vertices are users and items, and edges represent trans-
action relationships; (ii) running graph algorithms such as PageRank/SimRank in libgrape-lite [24]
as new vertex attributes; (iii) selecting influential users and tailoring attribute tables in Pandas [16];
and (iv) training a deep learning model to predict more fraudulent users in PyTorch.
Datasets. For job (1), we use a heterogeneous network ogbn-mag [6]: it contains 4 types of entities,
as well as four types of directed relations connecting two entities. For job (2), we apply the dataset
from the Kaggle contest "Google Analytics Customer Revenue Prediction" [1] which consists of
a set of visiting records including visitID, location, device, time, visiting count, and other extra
attributes. For job (3), we employ three real-life datasets from production which consist of all
transaction records in a period of 15 days from Alibaba. Table 1 summarizes the statistics of the
dataset in jobs (1) to (3). All datasets are stored as compressed CSV files.
Baselines. We compared Vineyard with the following baselines: (i) S3-like object store service while
all intermediate data is directly stored as files, and (ii) Alluxio, which works like a memory cache
for a file system which transparently caches frequently accessed data in memory, to improve
throughput and reduces I/O costs.
Exp-1: End-to-end and data-sharing performance.We first evaluate the end-to-end perfor-
mance and data-sharing costs of Vineyard, and compare with its competitors on the cluster when
there were no other data analytics jobs running. Table 1 reports the end-to-end performance of
the three jobs. The end-to-end time means the runtime of the whole workflow, starting from
loading data from files to outputting the final results. Here data-sharing costs include those for
data (de)serialization, I/Os, and data migration across hosts when the data processing system is not
co-located with its inputs. In this experiment, we used 8 workers for each job.
(1) Overall, on the end-to-end performance side, Vineyard achieves 3.9∼10× speedups compared
with S3-like, 2.5∼2.8× speedups compared with Alluxio. This is mostly due to the effectiveness of
Vineyard in reducing data-sharing costs for complex and nested data structures. Note that job (1)
shares the single graph in the whole workflow, rendering data-sharing time small with Vineyard.
Compared with its competitors, Vineyard achieves a 28.8× speedup on average, up to 68.4×, on
cross-system data sharing.
(2) Vineyard requires less memory footprint in all jobs. Vineyard uses 70%∼90% memory com-
pared with S3-like, and 45%∼72% memory compared with Alluxio. This benefit mainly comes
from the memory mapping of Vineyard, which enables the zero-copy fashion for data sharing.
Alluxio requires more memory due to its file-cache mechanism, while copying inevitably incurs
(de)serialization costs.
Exp-2: Put and get objects.We further evaluated the data-sharing efficiency of Vineyard with
three widely used data structures: (1) a dataframe containing 6 columns and 351 million rows, (2)
a tensor with 2.1 billion elements, and (3) a graph of 60 million vertices and 167 million edges. Each
element of the dataframe object and the tensor object is stored as an int64. A graph has two main
data structures: a HashMap to index its vertices and a sparse matrix in CSR (compressed sparse row)
format for its edges. Each object takes around 16GB space when loaded into main memory. We parti-
tioned these objects into 2, 4, and 8 chunks and evaluated the time of building a collection toVineyard
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Fig. 9. Efficiency of data sharing

and getting it back from Vineyard. Note that we turn off the allocator when building the blobs in this
experience, otherwise the building blob time would be nearly zero. This is because there is no data-
copy cost when the allocator is enabled, and the only extra cost of malloc is less than 1`𝑠 on average
which is comparable to the state-of-the-art malloc libraries. More specifically, themalloc cost is con-
stant to either the size of a blob or the structure of data. Therefore, the building blob time is generally
ignored when the allocator is on. The results are reported in Figure 9. We find the following:
(1) We observe that on average it takes over 99% of building time to save the blobs to the shared
memory of Vineyard. The time of saving metadata to the object store is quite small, i.e., less than
0.13s in all cases. Since there is no serialization cost when building these objects, storing objects in
Vineyard only involves memory copying and is very efficient (see §4.1).
(2) The building time of objects scales very well. It takes 1.4s, 1.3s, and 2.9s to build build a
Collection of 8 local objects distributed evenly across hosts for the tested dataframes, tensors,
and graphs, respectively. The graph building time is larger than others, as each fragment of the
graph object needs to build the same global vertex map, which alone accounts for around 5GB of
memory space.
(3) Compared with the building time, the time of getting an object from Vineyard is negligible, i.e.,
less than 0.9% for all cases. On average, it takes 0.034s, 0.024s, and 0.038s to get the dataframe,
tensor and graph objects, respectively. This is because getting objects is conducted in a zero-copy
fashion via memory mapping, thanks to the decoupled design of objects.
(4) The extra overhead by Vineyard for fetching objects from remote hosts is small as well. As dis-
cussed in §4.3, in many cases, fetching remote objects are minimized with locality-aware scheduler
plugin. When such fetches are necessary, we measured the cost of fetch() of 100𝐾 tensor objects
sizes ranging from 8MB to 10GB over UDP, TCP and RDMA I/O connectors. Our evaluation shows
that Vineyard can fully utilize the networking with little overhead (more than 94.61% utilization of
the network bandwidth reported by the respective iperf3 (iperf-rdma for RDMA) tests).
Exp-3: Incremental object creation.We next evaluated the time and space efficiency of incre-
mental object creation. Varying the number of rows from 88 million to 352 million of an existing
dataframe with five columns, we built a new dataframe by inserting one new column into existing
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one. Varying the number of vertices from 148 million to 2 billion of a simple graph with an average
degree 5, we added 2 properties for each vertex and convert it to a property graph [53]. Each
dataframe or graph object has 8 chunks. We compared incremental object creation IncBuild with a
baseline ReBuild that re-builds new objects starting from scratch.

Fig. 10. Effectiveness of Incremental Object Creation.

Fig. 11. Performance of
VCDL code generation for
different languages.

As shown in Figure 10, IncBuild outperforms ReBuild in time efficiency by 7.2× and 26.3× on
average, up to 8.4× and 33.9× for dataframe and graph, respectively. To build the new dataframe
and graph objects, IncBuild on average saves 83.3% and 99.4% memory space usage since Vineyard
objects is composable and it can safely reuse and share existing blobs with the old dataframe and
graph objects (see §4.1). Moreover, the saved time and space get larger as the size of the original
data volume scales, indicating the necessity of composability and incremental object creation when
facing large-scale data.

Table 2. Comparison of integration cost & performance with different systems.

S3-Like Alluxio Vineyard Vineyard FUSE

VCDL Type Systems 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 LOCs 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡

VYTensor
NumPy 1.0 0.5627 0.1057 0.2794 0.0026 0.0019 32 * 0.0949 0.1559
PyTorch 1.0 0.3859 0.0669 0.1854 0.0029 0.0025 58 * 0.0746 0.1290
XTensor 1.0 0.6881 0.0908 0.3195 0.0045 0.0588 46 + 0.0734 0.1782

VYDataFrame
Arrow 1.0 0.6360 0.5964 0.6345 0.015 0.033 148* 0.1279 0.3610
Pandas 1.0 0.7708 0.7516 0.7671 0.0139 0.023 68 * 0.5288 0.4434
HDataFrame 1.0 0.5495 0.2282 0.2569 0.0035 0.1399 121+ 0.2187 0.3206

VYFragment
GraphScope 1.0 1.9529 0.4002 1.8365 0.0038 0.0323 108* 0.3721 1.7891
PowerGraph 1.0 0.6442 0.8128 0.6359 0.0058 0.2334 144+ 0.8323 0.6010
GraphX 1.0 0.3440 0.8049 0.1985 0.0039 0.1148 208+ 0.6700 0.1783

1 When benchmarking Alluxio, we preload data to MEMORY cache for read and use MUST_CACHE as write policy for its
best performance.

2 Data processing systems are implemented in different programming languages, including Python ( ), C++ ( ) and
Java ( ).

3 Vineyard is integrated into data processing systems by either payload sharing (annotated with ∗) or method sharing
(annotated with +).

Exp-4: Integration cost and efficiency. To evaluate the cost of integration and performance of
Vineyard, we compared the integration cost (measured by lines of source code change [50]) and
performance (measured by execution time) between Vineyard and other solutions. We chose three
types of data structures, i.e., tensors, dataframes, and graphs, and three data processing systems
for each data type to evaluate the performance of exchanging intermediate data between those
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Jobs taken from Alibaba production environment from 2022.06.01 to 2022.10.31
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Fig. 12. Deploying Vineyard in production environments.

systems over different data storage mediums. For our baseline S3-like object store and Alluxio, we
use formats that are already supported by those data processing systems as the intermediate data
formats, i.e., HDF5, Parquet, and CSV, respectively. When integrating with Vineyard, we use VCDL
to define VYTensor, VYDataFrame, and VYFragment as the intermediate data formats.

We deployed a micro-benchmark with around 10GB intermediate data for each data type. Table 2
shows the normalized execution time of data sharing as well as lines of code needed for integrating
the above data types with data processing systems.𝐶𝑖𝑛 represents the cost of get() from Vineyard
and 𝐶𝑜𝑢𝑡 represents the cost of put() into Vineyard. We observed the following: (i) Vineyard
outperforms baselines in both get() and put(). With payload sharing, both get() and put() only
involve metadata manipulation without memory copy for blobs. While with only method sharing,
the get() is still fast, as no data (de)serialization or transformation is needed. However, the put()
needs extra costs to build system-specific data structure into Vineyard. (ii) Even without extra
integration, the FUSE driver can still help reduce the cost of data sharing, compared to exchanging
intermediate data over external storage or file system-oriented caching systems, as the filesystem
views are carefully maintained in memory by Vineyard.

Further, we take Java as the target to evaluate the performance of cross-language optimizations in
method sharing mentioned in §4.2. Figure 11 shows: (i) the overhead of cross-language method shar-
ing is low compared to naive FFI calls (e.g., VCDL-Java vs JNI); and (ii) calling into a foreign language
is more efficient, compared with implementation in native languages (e.g., VCDL-java vs. Java).
Exp-5: Vineyard in production environments. We have deployed Vineyard in production
environments and obtained a huge gain for optimizing intermediate data-sharing time in various
data-intensive workflows. Among them, many consist of steps including similarity search, graph
analytics, SQL and deep learning, and Hive-like data-warehouse tables are used as external storage.
Those workflows are scheduled to a large Kubernetes cluster as around 40, 000 jobs within a day.
The scale of steps in these jobs ranged from 1 to 4000 workers, and the size of intermediate data
varies from several MBs to hundreds of GBs.

Figure 12 demonstrates the statistics of the I/O cost ratio in end-to-end execution time for
intermediate data sharing uniformly sampled from our daily production environments. With data-
warehouse tables, loading input data from tables and saving results into tables usually consume
over 40% of the total execution time, and the number can be up to 95.06% in some cases when the
end-to-end execution time gets longer. The I/O cost is high for both short-lived and long-running
jobs and sharing intermediate data is a common concern in big-data analytical applications. We
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then measured the acceleration after introducing Vineyard into intermediate data sharing. As
shown in Figure 12, there is a stable acceleration effect for both short-lived and long-running jobs,
and the end-to-end execution time can be accelerated up to 9.48×.

7 RELATEDWORK

single-system vs. multi-system. Existing systems like Ray [49] and Spark [65] aim to provide
simple and universal APIs for diverse workloads. However, previous work [67] has shown that
workload-specific systems may outperform these general systems over 100× for applications like
graph computation. Thus, multi-system is a necessity for handling read-life complex data analytics
workflows.
Cross-system data sharing. Various distributed storage systems, e.g., HDFS [57], S3 [10] and Al-
luxio [40], are often applied to share immediate data in multi-system. However, they suffer from
huge (de)serialization and/or I/O overheads [11, 32, 60]. Thus, some recent work, e.g.,Apache Arrow
Plasma [31], enables zero-copy data sharing for some data structures. However, it cannot cover
diverse data structures and failed to scale out to share distributed data that cannot be fit into the
memory of single machine.
Multi-language interfaces. The idea of providing multiple language interfaces by generating boiler-
plate code from a description language has been widely adopted in many projects like Protobuf
and Thrift [58]. There are also attempts showing the benefits of translating LLVM bitcode to JVM
bytecode [54, 59]. Another research direction in polyglot programming is compiling programs in
different programming languages to the same IR and executing on the same runtime [62]. However,
the compilation barrier across languages still exists. Compared with existing work, Vineyard pro-
posed a novel way to handle generics when generating multiple-language interfaces and made the
integration easier. Instead of compiling all LLVM bitcode to JVM bytecode, Vineyard only translates
certain instructions that can be properly handled by the JIT compiler and gains performance
improvement.
Data-aware scheduling. Data-intensive analytics workflows (jobs) suffer from expensive data shuffle
costs. Especially on Kubernetes, the scheduler routes tasks to nodes only based on the computing
resources consideration, lacking information about data exchanging between tasks. To solve this
problem, some recent work, e.g., Fluid [12], binds pods to nodes based on the volumes information
that mounts the required inputs, in order to ensure co-locating between computation and data.
However, it is ill-suited for dynamic resources on multi-tenant clusters where co-locating cannot
always be fulfilled. Instead, Vineyard applies an adaptive switch mechanism to optimize the task
scheduling on-the-fly to minimize the data shuffle costs.

8 CONCLUSION
Specialized data processing systems targeted to specific workloads often provide high performance.
However, sharing intermediate data from one to another becomes a major bottleneck. To alleviate
high cross-system data-sharing costs, we present Vineyard, a high-performance, extensible, and
cloud-native object store. With Vineyard, data sharing can be efficiently conducted via payload
sharing and method sharing. It also provides an IDL named VCDL to facilitate the integration. As a
cloud-native system, Vineyard is designed to be native in interacting with container orchestration
systems, as well as achieving fault tolerance and high performance in production environments.
Vineyard is open-source and under active development. It is already integrated or being integrated
with over 20 data processing systems. We hope Vineyard can be used as a common component for
data-intensive jobs and connect diverse big-data engines.
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